Dark Matter Determinations from *Chandra* Observations of Quadruply Lensed Quasars

David Pooley Eureka Scientific davepooley@me.com

Paul Schechter Saul Rappaport Jeffrey Blackburne

- Microlensing by stars causes discrepancies with lens models.
- X-rays give cleanest microlensing signal.
- Ratio of dark matter to stellar material determines probability of strong microlensing effects.
- Ensemble of 14 systems indicates the integrated mass through galaxy at R \approx 5 kpc is 85% 95% dark matter.

X-rays give cleanest microlensing signal

Schematic of quasar accretion disk

Einstein radius of star in typical lensing galaxy:

~ 3 $\sqrt{(m/M_{\odot})} \times 10^{-6}$ arcsec

Strong microlensing effects are observed

High magnification saddle point image (A) is strongly demagnified in X-rays w.r.t. model

Probability of microlensing depends on dark/stellar ratio

Custom microlensing maps are made for each system for a variety of dark/stellar ratios. Strong demagnifications are unlikely for very high (100%) and very low (1%) stellar fractions.

Probability of microlensing depends on dark/stellar ratio

10% Stars

Custom microlensing maps are made for each system for a variety of dark/stellar ratios. Strong demagnifications are unlikely for very high (100%) and very low (1%) stellar fractions.

High Mag. High Mag. Low Mag. Low Mag. Saddle Pt. Minimum Minimum Saddle Pt.

Magnification (relative to average)

100% Stars

Magnification (relative to average)

	I I					
< 0.20	0.33	0.50	1	2	3	> 5

Ensemble of quads indicates 85–95% dark matter at $R \approx 5$ kpc

Two Bayesian methods are used to determine most likely dark/stellar ratio. Integrated matter fraction through lensing galaxies at impact parameters between 2 – 8 kpc

- Cleanest microlensing signal in X-rays
- Strength of microlensing effects depends on composition of matter
- Independent evidence for existence of dark matter
- 85 95% dark matter at ~5 kpc from galaxy center

Questions? davepooley@me.com